Part Number Hot Search : 
ISL97522 ZXCL280 12SQ04 16C55 L5983 BPC351 3DD102C 4NQ10L
Product Description
Full Text Search
 

To Download B10011S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Features
* Capability of Single-wire Operation * Hardware Fault Recognition * Inputs with High Common-mode and Differential-mode Interference Rejection Above
100 VPP due to External Filters at the Receiver Input
* Immunity Against Electromagnetic Interference * Immunity Against Ground-voltage Offsets < 6 V * Ruggedized Against ESD by MIL-STD-883C, Method 3015
Benefits
Systems which employ this device have the following benefits compared to solutions using discrete components: * High Reliability
CAN Transceiver IC B10011S
Applications
* Especially Suited for Truck and Van Applications * Interface Between Truck and Trailer * Interface Between Dashboard and Engine
Description
The CAN driver IC B10011S is a low-speed, high-level interface for 24 V (27 V) operation with transmission levels according to ISO WD 11992-1 (point-to-point interface between trucks and trailers). It is developed for signal levels of 8/16 V and a speed of up to 250 kbits/s.
www..com
This device allows transmission, that is insensitive to electromagnetic interference. Such interferences may especially occur in truck applications where (due to the length of the wires) high common-mode voltages (e.g., 50 ) can be coupled into the lines. This device contains a fault recognition circuit that detects faults on one of the two wires, which are normally used for transmission. If a fault occurs the operation can be switched from double-wire to single-wire mode thus, allowing proper operation even if one wire is broken, has a short-cut or a high series resistance. Figure 1. Block Diagram
1 2 3 4 5 6 7 8 VDD VSS 2.5 V Error control +4.3 V VCC Select control Comparators
16 15 14 13 12 11 10 GND 9
Output control
B10011S
Rev. 4749B-AUTO-09/04
Pin Configuration
Figure 2. Pinning SO16
ASEL BSEL ER RX1 RX0 TX0 VDD VSS 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 F1 F0 S+ VCC H' L' GND S-
Pin Description
16-lead SOIC (SO16), Small Outline Gull - Wing
Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Symbol ASEL BSEL ER RX1 RX0 TX0 VDD VSS SGND L' H' VCC S+ F0 F1 Function Select control input Select control input Error signal output Reference voltage 2.5 V Receiver output Transmitter input Controller supply voltage 5 V Controller supply voltage 0 V Collector of internal NPN switch Vehicle ground 0 V Data out driver Data out driver Vehicle power supply 24 V Control output for external PNP Receiver input Receiver input
2
B10011S
4749B-AUTO-09/04
B10011S
Absolute Maximum Ratings
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Parameters Supply voltage Controller supply voltage Input voltage at any input Junction temperature Storage temperature range Soldering temperature (for 10 s maximum) Symbol VCC VDD Vin Tj Tstg Tsld Value -0.5 to +36 -0.5 to +5.5 -0.5 to VDD 150 -55 to +150 260 Unit V V V C C C
Operating Conditions
Parameters Supply voltage car battery Controller supply voltage Control input voltage Input voltage Operating temperature Symbol VCC VDD Asel, Bsel Tx0 Tamb Value 7 to 32 4.75 to 5.25 0 to VDD 0 to VDD -40 to +105 Unit V V V V C
Operating Modes
0 = 0 V, 1 = 5 V Asel 0 1 0 1 Bsel 0 0 1 1 Rx0 3.8 V From H From L From L-H Mode H, L drivers disabled, L load disabled, S-, S+ disabled station not in operation, but consuming current Single-wire H, L driver, L load, S-, S+ disabled Single-wire L, H driver disabled Two-wire operation, normal mode
ER (error signal) is low when normal operation is disturbed by line faults (interruption, short to ground or to VCC, H to L short disturbance by high voltage transients). After a waiting period due to transient delays, the controller is asked to test if single-wire operation is possible by changing the Asel and Bsel state. Asel and Bsel have an internal pull-up resistor. Therefore, the no-connect state is 1, but connection to VDD is recommended when not in use.
3
4749B-AUTO-09/04
Pulse Diagram
Figure 3. Pulse Diagram
TX0 5V
The pulse diagram for two connected, identical stations is shown below. The resistor levels have to be kept constant when additional stations are connected.
dominant 0V
recessive 4 ms min(1) t
5V
RX0
0V
t
27 V L 18 V H 9V 0V t
27 V L' 18 V H' 9V 0V
(1)
t Filter has to be changed if short distances are to be allowed
4
B10011S
4749B-AUTO-09/04
B10011S
Electrical Characteristics
Test condition: Test circuit (see Figure 4 on page 6), 0 = 0 V, 1 = 5 V VCC = 27 V, VDD = 5 V, VSS = 0 V, Tamb = -40C to +105C, unless otherwise specified. Parameters Test Conditions Tx0 = 0, Asel = 1, Bsel = 1 Supply current Tx0 = 0, Asel = 0, Bsel = 0 Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 1 Input current Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 0, Asel = 1, Bsel = 0 VIL(F0) = 1.9 V, VIH(F1) = 2.7 V Tx0 = 1, Asel = 1, Bsel = 1 VIL(F1) = 1.9 V, VIH(F0) = 2.7 V Tx0 = 0, Asel = 1, Bsel = 1 Output voltage Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 0, Asel = 1, Bsel = 1 No fault Fault on line VCC = 7 V, VDD = 4.75 V, VSS = 0 V, Tamb = 25C, unless otherwise specified. Parameters Test Conditions Tx0 = 0, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 0 Output voltage Tx0 = 0, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 0 VIL(F1) = 1.0 V, VIH(F0) = 1.15 V Tx0 = 0, Asel = 1, Bsel = 0 VIL(F0) = 1.0 V, VIH(F1) = 1.15 V VCC = 32 V, VDD = 5.25 V, VSS = 0 V, Tamb = 25C, unless otherwise specified. Parameters Test Conditions Tx0 = 0, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 0 Output voltage Tx0 = 0, Asel = 1, Bsel = 1 Tx0 = 1, Asel = 1, Bsel = 0 VIL(F1) = 1.6 V, VIH(F0) = 2.7 V Tx0 = 0, Asel = 1, Bsel = 0 VIL(F0) = 1.6 V, VIH(F1) = 2.7 V Symbol U(H') U(H') U(L') U(L') Rx0 Rx0 4.0 1.0 31.5 1.0 Min. 29 500 Typ. Max. Unit V mV V V V V Symbol U(H') U(H') U(L') U(L') Rx0 Rx0 3.3 1.0 6.5 1.0 Min. 4.5 100 Typ. Max. Unit V mV V V V V Symbol ICC IDD ICC IDD I(Tx0) I(Asel, Bsel) Rx0 Rx0 U(H') U(H') U(L') U(L') ER ER 4.7 100 26 1.0 3.8 24.5 1.0 Min. Typ. Max. 15 22 26 16 650 150 1.0 Unit mA mA mA mA A A V V V V V V V mV
5
4749B-AUTO-09/04
Figure 4. Test Circuit
470 H/L VDD H/L 150k VDD 1k8 220 470 1k8 VDD H/L 470 F1 Select control +4.3 V Error control Output control Comparators F0 S+ VCC H'
1 2 3 4 5 6 7 8
Asel Bsel ER 2.5 V Rx0 Tx0 VDD VSS
16 15 14 13 12 11 580 620
VIH
VIL VCC VCC
L'
VCC
GND 10 S9 2k5 VCC
B10011S
Figure 5. Application Circuit
+5 V Asel Bsel ER Rx1 Rx0 Tx0 VDD + VSS 10 F 1 2 150k 3 2n2 4 2.5 V 5 6 7 VDD 8 VSS GND Output control 12 10 + 11 40 V 10 1k8 9 01 M Resistors: MELF 0204, 1%, 0.6 W 02075, 1%, TK50 Chip capacitors NPO 0805, 1206, 10% Ferrite bead BLM 31A601S (Murata) Common-mode choke coils (SMD): B82790 S0513 N201 (Siemens) F2 2x50 H (Vogt) ST2001 (Vogt) Cable LiYY 4 x 1 mm2 Battery ground L H 1k8 1k8 1k8 220 270 VCC Error control Select control +4.3 V VCC Comparators Filter for 125 kbit/s operation 16k 16 VDD 15 14 BCX 17 13 1k8 1k8 24k 5k6 82p 16k 47p 22k 24k 5k6 82p 22k 47p
to CAN controller
Filter ground
6
B10011S
4749B-AUTO-09/04
B10011S
The implementation of a power filter and overvoltage clamp as follows is highly recommended: Figure 6. Implementation of a Power Filter and Over Clamps
10 From battery (cl. 15) 33 V Ground To pin 10 To VCC (pin 13) + 22 F
Application Hints
As an interface between CAN controllers and a two-wire data bus system for serial data interchange, this device is adapted to a special high-level, low-speed transmission system, which is useful in harsh environments. High immunity against ground offset and interference voltages on the bus have been the design goals for this device, rather than low power consumption or a minimum of external components. An error detection scheme is implemented in the receiver part to give quick information to the controller in case of faults occurring on the bus. Thus, the controller is able to start a search cycle in order to look for the possibility of single-wire operation or to disable the station from the bus. An automatic error-signal end is not feasible because parts of the system are disabled during single-wire operation. Therefore, the controller has to carry out short tests by switching to the two-wire state and checking, whether the error signal is still present or not. Errors due to dirty contacts, shorts between high and low line, or interruptions may not be recognized at all, because this device does not contain a complete fault computer. Two control inputs A sel and B sel enable four operation modes (see Table "Operating Modes" on page 3'). Depending on the nature of the error, the error signal ER is internally generated partly in the recessive or partly in the dominant transmission state. In order to avoid watching the error bits bitwise, an open-collector output driver (with a 1-kW series resistor) discharges a storage capacitor, which is charged by a time constant, long enough to hold the 0 state for, e.g., 200 s, thus, giving the controller enough time to recognize this status during idle times. Only the charging resistor may be changed and not the 2.2-nF capacitor. In order to perform a faster error-end test, the charging resistor may be shorted by an NPN emitter follower or by a tristate output high for approximately 1 to 2 s. The pinout of the device shows a controller side (pins 1 to 8) and a bus side (pins 9 to 16). The application circuit utilizes an input filter section which is necessary for every station and a bias section which is needed in two master stations only. Additional slave stations only contain the driving resistors at pins 11 and 12 (270 and 220 ), the choke coil, and capacitor between pins 13 and 10. A power filter and overvoltage clamp is highly recommended in order to avoid transmission errors due to spikes on the 24-V battery voltage. The input filter is designed as an 2-RC filter for 125 kbit/s and may be changed to 250 kbit/s. Its good pulse response and good suppression of high frequencies should not be weakened by omitting one of the capacitors.
7
4749B-AUTO-09/04
All the logical and sensing functions in the device are powered by VDD = 5 V. Therefore, the filter section also acts as a level shifter to the input comparator range (approximately 1 to 3.3 V). The diagram (see Figure 7) shows how the battery voltage, VCC, influences the comparator input voltages, F0 and F1, in relation to the internal reference voltage, V ref, in the recessive state. The lower V CC, the lower the bus level. Taking this into account the comparator input levels are F1 - Vref for single-wire H respectively F1 - F0 for two-wire operation. The comparator's offset voltage is 10 mV. Matching the filter biasing to the internal reference is essentially for safe operation even at low battery voltages during motor start. The level investigations and tests described in the following description have been carried out within the temperature range of -40C to +105C with two B10011S on a bus line, one of them always in the recessive state (see Figure 8 on page 9). In case of line shorts to VCC or to ground or in case of H to L shorts, all participants on the bus are intended to switch to single-wire operation and to disable their drivers not in use. The dynamic behavior of the circuit depends on the line capacitances to ground. Approximately 200 pF/m and a maximum of 6 nF have to be taken into account. The transition from the dominant to the recessive state enables the bias network to recharge the line through a driving resistor of approximately 300 . The transition from the recessive to the dominant state is approximately twice as fast. This is probably the source of emitted radiation having no capacitance on the line. The choke coil enables the suppression of this radiation in the frequency range above 5 MHz to 7 MHz. Care should be taken not to feed noise from VDD or VCC to the line. Therefore, they should be properly blocked by low-inductance capacitors. Data loss by externally induced interference is avoided by careful PCB layout and EMC design for this circuit as well as by providing appropriate overvoltage protection. It is very essential to separate battery ground and filter ground as indicated in the application circuit (see Figure 5 on page 6). Especially important is that the filter ground must be connected to pin 8 by a short connection not subject to disturbing currents from external sources. The ground wire of the "starquad" cable may introduce such currents and should be connected to battery ground via a 0.1-F capacitor in a way as short as possible, perhaps to the metal housing. In order to avoid thermal problems, the voltage divider and driving resistors should be kept away from the IC. Otherwise they would heat up the environment of the small IC and might reduce its life expectancy. Figure 7. Comparator Thresholds
V 5 RxN 4 3 2 1 0 5 10 15 20 25 30 35 VCC F1 F0 not ER
Uref
8
B10011S
4749B-AUTO-09/04
B10011S
Figure 8. Test Circuit Equivalents
VCC H' 300 H 300 2/3 VCC Switches are closed in the dominant state 1/3 VCC
300 L' L
300
Ideal test circuit equivalent 38k F1
VCC
4k54 0.946 V
220
H
300 2/3 VCC Switches are closed in the dominant state 1/3 VCC
270 L
300
38k F0
4k54
0.946 V Real test circuit equivalent
2CHL H CH0 L CL0
Capacitance H: CHgnd = CH0 + 2 CHL <= 200 pF/m Capacitance L: CLgnd = CL0 + 2 CHL <= 200 pF/m
9
4749B-AUTO-09/04
Ordering Information
Part Number B10011S-MFP B10011S-MFPG1 Package SO16 in tubes SO16, tape and reel, 1000 units/reel
Package Information
Pin 1
3.80 0.25
6.0 0.3
9.9 0.3
0.18 0.08
1.55 0.2
1.27 0.42 0.07
0.22 0.03 0.7 0.1
Revision History
Changes from Rev. 4749A - 10/03 to Rev. 4749B - 09/04
Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document. 1. Figure 2 "Pinning SO16" on page 2 changed.
10
B10011S
4749B-AUTO-09/04
Atmel Corporation
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600
Atmel Operations
Memory
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759
Regional Headquarters
Europe
Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500
Microcontrollers
2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60
Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom
Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80
Asia
Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369
ASIC/ASSP/Smart Cards
Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743
Japan
9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581
Literature Requests
www.atmel.com/literature
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
(c) Atmel Corporation 2004. All rights reserved. Atmel (R) and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper.
4749B-AUTO-09/04


▲Up To Search▲   

 
Price & Availability of B10011S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X